Chemical chaperones assist intracellular folding to buffer mutational variations
نویسندگان
چکیده
Hidden genetic variations have the potential to lead to the evolution of new traits. Molecular chaperones, which assist protein folding, may conceal genetic variations in protein-coding regions. Here we investigate whether the chemical milieu of cells has the potential to alleviate intracellular protein folding, a possibility that could implicate osmolytes in concealing genetic variations. We found that the model osmolyte trimethylamine N-oxide (TMAO) can buffer mutations that impose kinetic traps in the folding pathways of two model proteins. Using this information, we rationally designed TMAO-dependent mutants in vivo, starting from a TMAO-independent protein. We show that different osmolytes buffer a unique spectrum of mutations. Consequently, the chemical milieu of cells may alter the folding pathways of unique mutant variants in polymorphic populations and lead to unanticipated spectra of genetic buffering.
منابع مشابه
GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening.
While support in protein folding by molecular chaperones is extremely efficient for endogenous polypeptides, it often fails for recombinant proteins in a bacterial host, thus constituting a major hurdle for protein research and biotechnology. To understand the reasons for this difference and to answer the question of whether it is feasible to design tailor-made chaperones, we investigated one o...
متن کاملWhy molecular chaperones buffer mutational damage: a case study with a yeast Hsp40/70 system.
The malfunctioning of molecular chaperones may result in uncovering genetic variation. The molecular basis of this phenomenon remains largely unknown. Chaperones rescue proteins unfolded by environmental stresses and therefore they might also help to stabilize mutated proteins and thus mask damages. To test this hypothesis, we carried out a genomewide mutagenesis followed by a screen for mutati...
متن کاملProtein misfolding in conformational disorders: rescue of folding defects and chemical chaperoning.
Protein folding in the cell is a tightly regulated process, involving a series of proteins, from molecular chaperones to proteases that assist the folding process and monitor the quality of the final product. Despite this control, genetic or sporadic factors may compromise protein folding and the folded state resulting in the formation of non-native misfolded, destabilised, aggregated or fibril...
متن کاملChaperone-mediated hierarchical control in targeting misfolded proteins to aggresomes
Protein misfolding is a common event in living cells. Molecular chaperones not only assist protein folding; they also facilitate the degradation of misfolded polypeptides. When the intracellular degradative capacity is exceeded, juxtanuclear aggresomes are formed to sequester misfolded proteins. Despite the well-established role of chaperones in both protein folding and degradation, how chapero...
متن کاملGenomic determinants of protein folding thermodynamics in prokaryotic organisms.
Here we investigate how thermodynamic properties of orthologous proteins are influenced by the genomic environment in which they evolve. We performed a comparative computational study of 21 protein families in 73 prokaryotic species and obtained the following main results. (i) Protein stability with respect to the unfolded state and with respect to misfolding are anticorrelated. There appears t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012